Resit Paper: Computer Graphics (INBCG-08) 2016

Date: May 17, 2016 Time: 5:30pm - 8:30pm

Instructions:

- Fill in your name, student number, and date (top right corner) on each of the answer sheets that you hand in.
- Write clearly and in English. Illegible parts will not be graded.
- In derivations, describe all the steps needed to arrive at your result.
- Use pseudo-code and sketches/diagrams where appropriate.
- It is recommended that you read all questions in full first.
- The use of books, lecture/lab slides, notes, other similar material, and electronic devices is not allowed during the exam.
- Zero tolerance cheating policy applies.

Structure:

- This exam paper consists of 9 questions on 3 pages.
- You have 3 hours to answer all the questions.
- Some questions are split into sub-questions, each with its own point maximum (shown in bold).
- The total number of available points $P_{\max }$ is 100 .
- The exam grade E is arrived at as follows: $E=P / 10$, where P is your exam score.
- Your final course grade depends also on your grades for practical assignments.

Question 1: Illumination

Local illumination models typically determine the final intensity (colour) based on several components.
(a) ($\mathbf{2}$ points) What does the ambient component model from the real world?
(b) ($\mathbf{3}$ points) What does the diffuse component model from the real world and why is it independent from the viewer/camera position?
(c) (4 points) Given the normal \mathbf{N} and the direction \mathbf{L} to a point light source (both normalised) at a point on a surface, give the formula for evaluating the diffusion component \mathbf{I}_{d} in the Phong model, using the included sketch. How does your answer account for
 points with normals facing away from the light source?

Question 2: Light sources

One of the simplest light sources in computer graphics is the point light source. A spot light source with attenuation improves on the point light source in several regards.
(a) ($\mathbf{2}$ points) Describe what a point light source is, what parameters are needed to describe it in a scene, and what it (approximately) models from the real world.
(b) ($\mathbf{3}$ points) Describe what a spot light source with attenuation is and what it (approximately) models from the real world. Note that there are two types of attenuation. [Hint: One is based on distances, the other on angles.]
(c) ($\mathbf{5}$ points) Assume that at a point \mathbf{P}, the computed colour according to a certain illumination model with a single point light source is $\mathbf{I}_{\text {point }}=\mathbf{I}_{a}+\mathbf{I}_{d}$, where \mathbf{I}_{a} is the ambient component and \mathbf{I}_{d} is the diffuse component (the specular component is ignored). The light source is now replaced with a spot light source with attenuation with the same intensity and position, and its unit direction vector is \mathbf{S} and its distance to \mathbf{P} is d. The unit vector from \mathbf{P} to the light is \mathbf{L}. Starting from $\mathbf{I}_{\text {point }}$, give a formula for computing $\mathbf{I}_{\text {spot }}$ at \mathbf{P}, i.e., the new colour at \mathbf{P} when lit by the
 spot light, as a function of $\mathbf{I}_{a}, \mathbf{I}_{d}, \mathbf{S}, \mathbf{L}$, and d. Explain your formula.
(d) (2 points each) How are the two types of attenuation controlled by the user? Explain this in terms of the parameters in your formula from (c).

Question 3: Implicit surfaces

(a) (2 point) Given a point $\mathbf{P}=\left(p_{x}, p_{y}, p_{z}\right)$, how do we check whether the point is on the implicit surface described by $f(x, y, z)=0$?
(b) ($\mathbf{2}$ points) Assuming that \mathbf{P} is on the surface, how do we compute the normal of the surface at \mathbf{P} ?
(c) ($\mathbf{7}$ points) Marching cubes is an algorithm for converting implicitly given surfaces to polygonal meshes. Describe the algorithm using annotated pseudo-code and sketches. You can assume that we want to turn the surface given by $f(x, y, z)=l$, for some value of l, into a mesh over a grid of n^{3} cubes. It is not necessary to explicitly enumerate all the possible cases for a single cube arising in the algorithm.

Question 4: Z-buffer

(a) ($\mathbf{3}$ points) Explain the role of the z -buffer (also called depth-buffer) in the graphics pipeline.
(b) ($\mathbf{3}$ points) Can the z-buffer handle semi-transparent objects? If so, explain how. If not, give an example when it fails to produce the correct result.
(c) (4 points) The a-buffer can produce better results than the z-buffer. How is this achieved, and at what expense compared to the z-buffer? [Hint: Note that global super-sampling is inefficient. Consider which pixels need to be super-sampled and which do not, and why.]

Question 5: Texturing

To achieve more realistic results, the diffuse component in an illumination model is often replaced by or combined with intensity (colour) values from a texture.
(a) ($\mathbf{2}$ points each) Give three more examples of how textures are used to replace certain quantities or parameters in illumination models and to what effect.
(b) (3 points) A pixel on the screen typically does not correspond to a single pixel in a texture (texel), and thus upor down-sampling is needed. How is this handled and how does it improve on the naive point sampling?
(c) (3 points) Explain what a MIP map is (use a sketch), what are its advantages over a standard texture, and how does tri-linear averaging on MIP maps work.

Question 6: Polygon clipping

Polygon clipping is one of the operations performed in the graphics (OpenGL) pipeline.
(a) ($\mathbf{3}$ points) Describe a situation (using a sketch) where skipping polygon clipping would produce the wrong rendered result. For what other reason is clipping performed?
(b) (6 points) Describe the Sutherland-Hodgman polygon-clipping algorithm in 2D screen space, including all transition types that arise in it. Assume that the polygon has n
 vertices \mathbf{P}_{1} through \mathbf{P}_{n}, and that the screen is rectangular.
(c) ($\mathbf{2}$ points) What changes need to be made to (b) to extend the algorithm to handle clipping in 3D against the viewing frustum?

Question 7: Ray-tracing

(a) (6 points) Describe, in pseudocode, the basic ray-tracing algorithm (no bounces) with only ambient illumination that produces the final rendered image. Assume that the screen has $a \times b$ pixels with centres $\mathbf{P}_{a, b}$, the centre of projection is at \mathbf{E}, and that there are n objects in the scene. Each object comes with its own (ambient) colour and an intersection routine which returns, given a ray, all existing ray-object intersections.
(b) ($\mathbf{2}$ points) Shadows add more realism to a rendered scene. In a ray-tracer, how does one check whether a visible point is lit or in shadow with respect to a single spot light in the scene?
(c) (2 points each) Describe two effects which cannot be captured by (distributed) ray-tracing: one that is well modelled by radiosity and one by photon maps. Include a sketch and justify your answer in both cases.

Question 8: Rasterisation

Rasterisation (or the rasteriser) is an important step in the graphics pipeline.
(a) ($\mathbf{3}$ points) What is rasterisation and where does it fit into the graphics pipeline? Include a diagram of the whole graphics pipeline (or relevant parts thereof).
(b) (4 points) Assume that you have a line-drawing algorithm that rasterises line segments. How can this be integrated into an efficient algorithm for rasterising triangles? Flood-fill is not considered efficient in this context.
(c) ($\mathbf{2}$ points) What problems can arise when triangle rasterisation is not well aligned with linesegment rasterisation? Give an example.
(d) (2 points each) Describe, in brief, two shading models: One in which colours are interpolated and one in which normals are interpolated, in the rasterisation step, over a given triangle. Where in the graphics pipeline are these shading models implemented? Which one
 is more efficient (for a typical scene) and why?

Question 9: Transformations

In graphics, 3D transformations are typically described by 4×4 matrices in homogeneous coordinates, and these are cocatenations of atomic transformations comprising scaling (both uniform and non-uniform), rotation, shearing, and translation.
(a) ($\mathbf{3}$ points each) Decompose the transformation given by

$$
\mathbf{M}=\left(\begin{array}{cccc}
0 & 0 & 1 & 1 \\
0 & 1 & 0 & 0 \\
-1 & 0 & 0 & -1 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

into exactly two atomic transformations, i.e., in the form $\mathbf{M}=\mathbf{M}_{1} \cdot \mathbf{M}_{2}$. Give the individual matrices \mathbf{M}_{1} and \mathbf{M}_{2}, describe the corresponding transformations geometrically in one sentence, and include a sketch.
(b) ($\mathbf{2}$ points) What is the resulting matrix \mathbf{M}^{\prime} if the two atomic transformations from (a) are applied in reverse order, i.e., $\mathbf{M}^{\prime}=\mathbf{M}_{2} \cdot \mathbf{M}_{1}$?
(c) ($\mathbf{2}$ points) Give an example of a pair of atomic transformations, not both of the same atomic type, that produce the same transformation when concatenated in either of the two possible orders. Explain your answer.

